

control development software

control development software

CDP dramatically changes the way control systems are built:

- Significantly reduced development time
- New possibilities giving increased performance and functionality of controlled equipment

control development software

 Designed for advanced and complex control systems, demanding the best possible performance, flexibility and safety

control development software

- Flexibility of C++ and efficiency of high-level application development
- Efficient software tools assist the development process from C+ + code generation to testing and maintenance
- Middleware layer provides generic functionality and services, such as communication, allowing you to focus entirely on application development

control development software

CDP is:

- Component based
- Distributed
- Platform independent

CDP foundation

We wanted to solve typical problems occuring in real-time and embedded development projects:

- Time consuming
- Special knowledge required
- Risc; will it be completed, is it stable now..
- No reuse of methodology and software
- Awkward and less known tools
- Documentation out of date
- A considerable amount of available resources used on application independent infrastructure

CDP foundation

CDP is based on ideas found to increase efficiency of development and make life easier for the developer:

- Freedom to make my own solutions.
- Infrastructure: If all effort can be focused on application development, the end result will be much better.
- Develop and test on workstation.
- A simple, defined method for C++ implementation.
- Simulate parts of the physical process.
- Efficient tools for signal analysis and process state variable monitoring.

Component Architecture

- Components in a hierarchical structure
- Implementation reduced to component creation
- Components are actually reusable

Distributed

- Logical structure independent of physical
- CDP provides real-time communication between components

Distributed Development

- The distributed, component- based architecture makes it easy to distribute development to separate teams or individuals
- Typically, a new component will have a clear and simple specification of its interface, since all lower-level interfacing and communication issues are solved by CDP

Component model

- State machine and periodic process
- Signals
- Messages
- Alarms
- **Parameters**
- Persistent in .xml
- Consistent code structure

Component model

- State machine with State **Transitions**
- Can also create new threads

Platform independent

- Supports Windows and real- time operating system
- Can run application tests on the workstation
- Same application code on workstation and target

Use exisiting code

- Existing code can be integrated in to components
- Adds CDP functionality to old programs, bringing them into the future

Signals and parameters

- Signal member objects let you monitor and transfer values used in the C++ code in realtime
- In the code, both Signals and persistent parameter objects are used as if they were primitive data types like int or double

Developmentprocess

- C++ programming of new components result in model libraries, which are selected and linked to executable binaries
- No need for C++ programming when distributing and configuring applications which consist of components already developed and tested
- CDPDeveloper generates all necessary framework code for new CDP components
- Applications are created by instantiating and configuring components from model libraries

Option: CDP Redundancy

- Full redundancy functionality and the power of C++ programming
- Can run on different hardware and operating system
- Performance only limited by hardware
- Flexible set-up to suit any application requirements

Option: CDPUI

- Graphical user interface for control systems
- Integrated with control software
- Makes traditional 'HMI' obsolete

Option: CDPSim

- Dynamic simulation toolkit
- Simulate non-linear and complex models
- Integrated with control software
- Hardware-in-the-loop
- Reduce risc by simulating parts of the physical process

Tools: CDPDeveloper

- Development environment for CDP
- Code generator
- View and edit .xml and C++ files
- View and generate documentation

Tools: CDPFileManager

 Upload and download files to target controller

Tools: Generator

- Signal source for testing and simulation
- Easily extendable to suit your custom needs

Tools: CDPBrowser

- Browse all CDP applications and components
- Monitor and edit signals, parameters, alarms
- Send messages

Tools: WebServer

- Monitor and edit signals, parameters, alarms
- Edit properties
- View and generate documentation

Case: AHC Platform

- 3 degrees of freedom active motion- compensated platform
- Non-linear, multivariable control
- Extensive use of simulation

Case: AHC Platform

- Graphical user interface and control on same computer
- Distributed IO
- CDP makes it possible to use standard off-the-shelf hardware for this high-performance application

Case: Software development

- Using simulator to test control application
- Everything runs on workstations

Case: Testing

- At first, all mechanical parts are simulated
- Gradually enabling more physical parts
- Using simulated vessel movement to test on-shore

Case: AHC Platform in-use

Industrial Control Design AS

www.icd.no

